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Supplementary Figure 1. Absolute MOTS-c levels in human muscle and plasma.
Relative MOTS-c levels are shown in Fig. 1c-d. Here, the absolute quantification of MOTS-c
levels measured by a Western blotting on human skeletal muscle collected pre-, post-
exercise and 4-hours of resting, normalized to corresponding GAPDH levels (MOTS-c/
GAPDH) (P=0.0098) and b ELISA on plasma from the same individuals collected pre-, mid-,
post- exercise and 4-hours of resting (n=10) (P=0.0011 Mid-; P=0.0020 Post-exercise). Data
are presented as both average values and individual datapoints. Statistics by Wilcoxon
matched-pair signed rank test. *P<0.005 **P<0.01.
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Supplementary Figure 2. Rotarod, grip strength, and Barnes Maze tests in MOTS-c treated old mice. a Summary of latancy time to fall on
the Rotarod test (n=13 Control, n=16 MOTS-c) (P=0.0042). The speed of the rotations increased from a starting speed of 24 rpm by 1 rpm every
10 seconds. b Grip strength test (n=5) (P=0.7012). ¢,d Barnes Maze performance in control and MOTS-c treated 12-week old mice (n=15). c
There was no change in the average time to find the escape box (latency) between control and MOTS-c treated mice. d There was no change in
the number of errors made prior to discovering the escape box between groups. Errors were defined as nose-pokes or head deflections over
false holes. Data expressed as mean +/- SEM of three 24-hour acquisition cycles. Two-sided Student's t-test. *P<0.05. **P<0.01, ***P<0.0001.
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Supplementary Figure 3. Outline of HFD mouse experiments. Timeline of experiment for 12-week old male CD-1 (outbred)
and C57BL/6J (inbred) mice fed a HFD or defined control diet. a CD-1 mice were fed a HFD and given daily intraperitoneal
injections (IP) of MOTS-c (0, 5, or 15 mg/kg/day) from Day 0. Treadmill running tests were performed on Day 7 (Supplementary
Fig. 5a) and Day 10 (Fig. 2a-d). Daily MOTS-c injections ceased at Day 16. b C57BL/6J mice were started on either a HFD or a
defined control diet on Day 0 and continued uninterruptedly throughout the experiment. Daily MOTS-c treatment (15 mg/kg;
IP) started on Day 14. Treadmill running tests were performed on Day 24 and Day 28 (10 days and 14 days after the start of

MOTS-c treatment) (Fig. 2e-h; Supplementary Fig. 5b). Mice were treated daily until Day 56, at which time metabolomics was
performed (Fig. 2i).
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Supplementary Figure 4. The effect of MOTS-c on exercise work output. Based on the treadmill running
studies in a young CD-1 (Fig. 2a) (n=5 0,5 mg/kg MOTS-c, n=6 15mg/kg MOTS-c) (P=0.0346), b C57BL/6J (Fig.
2e) (n=8) (P=0.0286 control diet; P=0.0122 HFD), and ¢ middle-aged and old C57BL/6N mice (Fig. 3b) (n=10
Middle-Aged mice, n=18 Old MOTS-c and n=19 Old Control) (P=0.0479 Middle-Aged and P=0.0005 Old), total
exercise work output was calculated taking into account body weight, acceleration due to gravity, and
distance. Data expressed as mean +/- SEM. Two-sided Student'ds t-test *P<0.05, ****P<0.0001.
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Supplementary Figure 5. Initial running time of MOTS-c treated young mice. a Running time of
CD-1 mice following seven days of MOTS-c treatment (n=5 for Control and 5 mg/kg MOTS-c, n=6 for
15 mg/kg MOTS-c). MOTS-c (15mg/kg/day) treatment showed a trend towards enhanced running
performance. b Running time of HFD-fed C57BL/6J mice following 10 days of MOTS-c treatment
(n=8) (P=0.0229). Data expressed as mean +/- SEM. Two-sided Student's t-test. *P<0.05
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Supplementary Figure 6. Body composition analysis on MOTS-c treated young mice. Body composition was measured non-
invasively using a time-domain NMR analyzer. a-c Young CD-1 mice were treated daily with MOTS-c (0, 5, or 15 mg/kg/day;IP) for 16
days (n=5 control and 5 mg/kg/day MOTS-c, n=6 for 15 mg/kg/day MOTS-c and percent a body weight, b fat mass (P=0.0320, 5 vs. 15;
P=0.0251,0v 15), and c lean muscle mass (P=0.0105) were measured. d-f C57BL/6J mice either on a HFD or a defined Control Diet and
treated daily with MOTS-c (15 mg/kg/day;IP) or saline control (n=8) and percent d body weight (P<1E-15), e fat mass (P=0.0119), and f
lean muscle mass were measured. The dotted line at Day 14 represents the start of MOTS-c treatment. Data expressed at mean +/- SEM.
Significance determined using two-wat ANOVA (repeated measures). *P<0.05, **P<0.001, ***P<0.0001.
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Supplementary Figure 7. Correlation between body weight and running capacity.
Correlation between body weight (g) and running time (s) was calculated based on Pearson correlation coefficient for a young CD-1
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Supplementary Figure 8. The effect of MOTS-c on food intake in young C57BL/6J mice fed a
normal or high-fat diet. Young C57BL/6J mice either on a HFD or a defined control diet were
treated daily with MOTS-c (15 mg/kg/day; IP) or saline control (n=8) and food intake was measured.
Mice were housed 4 animals/cage and food weight was measured per cage. Food intake is presented
per mouse. Two-way ANOVA on 2 cages/group. The dotted line at Day 14 represents the start of
MOTS-c treatment. Related to Fig. 2e-i.
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Supplementary Figure 9. Principal component loadings. PC loading a relevant to Fig. 2i, PC1 PC3 scatter plot with Glycolysis/
Pentose Phosphate Pathway labels and b relevant to Fig. 3g, PC1 PC2 scatter plot with Glycolysis and Hydrophobic Amino Acid

labels.
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Supplementary Figure 10. Alternate presentation of Fig. 3f divided by age and MOTS-c treatment. P-values derived using

two-way ANOVA. a P=0.0239. b P=0.0083.
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Supplementary Figure 11. Circadian pattern of food intake in MOTS-c treated old mice. a The
sum of coninuous food intake measurements using metabolic cages divided into daily quartiles in
MOTS-c treated middle-age (14 months) (P=0.0359) and old (24 months) (P=0.0370 and P=0.0089,
respectively) mice (n=4). b Measurements were taken six months later in the same mice (P=0.0004, 0-6.
P=0.0031, 6-12. P=0.000025, 12-18 and P=0.057 18-24). Data expressed as mean +/- SEM. Two-sided
Student's t-test. *P<0.05, **P<0.01, ***P<0.001.
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Supplementary Figure 12. Metabolomic analysis on sedentary MOTS-c-
treated old mice. Skeletal muscle from sedentary (not treadmill-exercised) old
mice (22.5 months) treated daily with MOTS-c (15 mg/kg/day) for 2 weeks (n=10)
were subject to metabolomics and analyzed using PCA.
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Supplementary Figure 13. Gene expression analysis on skeletal muscle from exercised MOTS-c-treated old mice. RNA-seq was performed on skeletal muscles
from MOTS-c-treated old mice. Balloon plots of biological processes derived from Gene Set Enrichment Analysis (GSEA) using the Gene Ontology (Biological Process)

database at a false discovery rate (FDR) < 15% (n=6).
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Supplementary Figure 14. Rotarod and Y-Maze tests in MOTS-c treated old mice. Middle-aged (14 mo.) and old (24 mo.)
mice (n=10 middle-aged mice; n=17 old MOTS-c and n=19 old Control) were treated daily with MOTS-c (15 mg/kg/day;IP) and
subject to a a rotarod test (P=0.000442, MA Control vs. Old Control, P=0.000008, MA MOTS-c vs. Old MOTS-c, P=0.000003, MA
Control vs. MA MOTS-c, and P=0.0000002, Old Control vs. Old MOTS-c) and b y-maze test. Data expressed as mean +/- SEM.

Two-sided Student's t-test. ***P<0.0001.
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Supplementary Figure 15. Total Physical Activity in MOTS-c treated old mice. Total movement [horizontal and vertical movement (XYZ-axis)] of MOTS-c treated a middle-aged (14 mo.) and b

old (24 mo.) mice were continuously measured using metabolic cages throughout the day for three days (n=4). ¢ The sum of all measured movements is shown. d-f The procedure was repeated on

the same mice after 6 months of LLII MOTS-c treatment (P=0.0029, Old Control vs. Old MOTS-c, P=0.026, Middle-Aged Control vs. Old MOTS-c, P=0.000013, Middle-Aged Control vs. Old Control. Data
expressed as mean +/- SEM of three 24-hour acquisition cycles. Two-sided Student's t-test. *P<0.05, **P<0.01, ***P<0.0001.
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Supplementary Figure 16. MOTS-c-dependent circadian fuel
selection old mice. Respiratory Exchange Ratio (RER) measurements
in LLII MOTS-c-treated, or control, old mice (30 mo.; n=4). Shaded
region represents daytime (light cycle) (P=0.00004). Data expressed
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ANOVA (repeated measures).
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Supplementary Figure 17. MOTS-cdependent glycolytic rate in lipid-stimulated mouse
myoblasts. C2C12 mouse myoblasts were treated with MOTS-c (10uM) or saline control in
nutruent-limited media (n=11 BSA baseline, n=12 palmitate addition). Real-time glycolytic flux
determined by the extracellular acidification rate was measured using the XF96 Seahorse
bioanalyzer. Prior to the start of the assay, nutrient-deprived cells were given either BSA alone
or palmitate bound to BSA (palmitate-BSA) to determine the capacity to metabolize fatty acids.
Data expressed as mean +/- SEM. Two-Way ANOVA. *P<0.05, **P<0.01,***P<0.001.
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Supplementary Figure 18 Gene expression analysis on MOTS-c-treated mouse myoblasts under metabolic stress. RNA-seq was performed on C2C12 myoblasts following 48 hours of GR/SD with
MOTS-c (10uM) treatment only once initially (n=6). Balloon plots of biological processes derived from Gene Set Enrichment Analysis (GSEA) using the Gene Ontology (Biological Process) database at a
false discovery rate (FDR) < 15% (n=6).
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